Explore With Us

Mercury


Mercury is the smallest planet in the Solar System and the closest to the Sun. Its orbit around the Sun takes 87.97 Earth days, the shortest of all the Sun's planets. It is named after the Roman god Mercurius (Mercury), god of commerce, messenger of the gods, and mediator between gods and mortals, corresponding to the Greek god Hermes (Ἑρμῆς). Like Venus, Mercury orbits the Sun within Earth's orbit as an inferior planet, and its apparent distance from the Sun as viewed from Earth never exceeds 28°. This proximity to the Sun means the planet can only be seen near the western horizon after sunset or the eastern horizon before sunrise, usually in twilight.



Magnetic Field

Despite its small size and slow 59-day-long rotation, Mercury has a significant, and apparently global, magnetic field. According to measurements taken by Mariner 10, it is about 1.1% the strength of Earth's. The magnetic-field strength at Mercury's equator is about 300 nT. Like that of Earth, Mercury's magnetic field is dipolar.Unlike Earth's, Mercury's poles are nearly aligned with the planet's spin axis. Measurements from both the Mariner 10 and MESSENGER space probes have indicated that the strength and shape of the magnetic field are stable.

It is likely that this magnetic field is generated by a dynamo effect, in a manner similar to the magnetic field of Earth.[93][94] This dynamo effect would result from the circulation of the planet's iron-rich liquid core. Particularly strong tidal heating effects caused by the planet's high orbital eccentricity would serve to keep part of the core in the liquid state necessary for this dynamo effect.



There is evidence for pyroclastic flows on Mercury from low-profile shield volcanoes. 51 pyroclastic deposits have been identified, where 90% of them are found within impact craters. A study of the degradation state of the impact craters that host pyroclastic deposits suggests that pyroclastic activity occurred on Mercury over a prolonged interval

VOLCANISM

A "rimless depression" inside the southwest rim of the Caloris Basin consists of at least nine overlapping volcanic vents, each individually up to 8 km in diameter. It is thus a "compound volcano". The vent floors are at least 1 km below their brinks and they bear a closer resemblance to volcanic craters sculpted by explosive eruptions or modified by collapse into void spaces created by magma withdrawal back down into a conduit.